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DATA PROCESSING SYSTEMS

BACKGROUND

The technology described herein relates to data processing
systems, and in particular to the operation of graphics pro-
cessing systems that include one or more programmable pro-
cessing stages (“shaders™).

As is known in the art, graphics processing is typically
carried out in a pipelined fashion, with one or more pipeline
stages operating on the data to generate the final render out-
put, e.g. frame that is displayed. Many graphics processing
pipelines now include one or more programmable processing
stages, commonly referred to as “shaders”. For example, a
graphics processing pipeline may include one or more of, and
typically all of, a geometry shader, a vertex shader and a
fragment (pixel) shader. These shaders are programmable
processing stages that execute shader programs on input data
values to generate a desired set of output data (e.g. appropri-
ately transformed and lit vertex data in the case of a vertex
shader) for processing by the rest of the graphics pipeline
and/or for output. The shaders of the graphics processing
pipeline may share programmable processing circuitry, or
they may each be distinct programmable processing units.

A graphics processing unit (GPU) shader core is thus a
processing unit that performs graphics processing by running
small programs for each graphics item in a graphics output to
be generated such as a render target, e.g. frame (an “item” in
this regard is usually a vertex or a fragment (pixel)). This
generally enables a high degree of parallelism, in that a typi-
cal render output, e.g. frame, features a rather large number of
vertices and fragments, each of which can be processed inde-
pendently.

As is known in the art, a shader program to be executed by
a given “shader” of a graphics processing pipeline will be
provided by the application that requires the graphics pro-
cessing using a high-level shader programming language,
such as GLSL, HLSL, OpenCL, etc. This shader program will
consist of “expressions” indicating desired programming
steps defined in the relevant language standards (specifica-
tions). The high-level shader program is then translated by a
shader language compiler to binary code for the target graph-
ics processing pipeline. This binary code will consist of
“instructions” which are specified in the instruction set speci-
fication for the given target graphics processing pipeline. The
compilation process for converting the shader language
expressions to binary code instructions may take place via a
number of intermediate representations of the program within
the compiler, as is known in the art. Thus the program written
in the high-level shader language may be translated into a
compiler specific intermediate representation (and there may
be several successive intermediate representations within the
compiler), with the final intermediate representation being
translated into the binary code instructions for the target
graphics processing pipeline.

A known way to improve shader execution efficiency is to
group execution threads (where each thread corresponds to
one vertex or one fragment (pixel)) into “groups” or
“bundles” of threads, where the threads of one group are run
in lockstep, one instruction at a time. This way, it is possible
to share instruction fetch and scheduling resources between
all the threads in the group. (Other terms used for such thread
groups include “warps” and “wavefronts”. For convenience
the term thread group will be used herein, but this is intended
to encompass all equivalent terms and arrangements, unless
otherwise indicated.)
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It is common in modern graphics processing units to have
instructions to perform “atomic” memory operations. An
“atomic” memory operation is an operation sequence that
reads a memory location, performs an arithmetic operation
between the memory value and a register value, and then
writes the result of the arithmetic operation back to the same
memory location. This sequence of operations is carried out
so that to every observer, it looks as if the sequence has either
not been performed at all, or been performed in its entirety. It
is executed as one indivisible unit, hence the name “atomic”.

The arithmetic operation that is performed as part of the
atomic is usually a simple operation that is both commutative
and associative. Common examples of such operations are:
Integer Add; Bitwise AND, OR, XOR; Minimum Value;
Maximum Value.

Other atomic operations that are common but not commu-
tative/associative are:

Swap (also known as Exchange)—the register value is
written to the memory location and the old value of the
memory location is then returned to the shader;

Compare-And-Swap (Compare and Exchange)—two reg-
ister values are provided, the memory value is compared to
the first of them, and if they compare equal, then the second
register value is written to the memory location.

Atomic memory operations typically occur in two variants:
“Return” and “NoReturn”. The “Return” variants return back
to the shader the datum that was present at the memory
location before the “atomic™ operation was performed. The
“NoReturn” variants do not return any value back to the
shader. Typically, in a GPU, all of the operations listed above
are available in both variants (except Swap, which is not
available in the NoReturn variant).

Typical examples of use-cases for GPU atomics include
incremental memory allocators (Integer Add of the “Return”
type), histograms (Integer Add of the “NoReturn” type) and
bounding-box computation (Minimum/Maximum Value of
the “NoReturn” type).

In a thread group-based (warp-based) GPU architecture,
when an atomic instruction is executed, it is typically started
for all the threads in the group at the same time. This can lead
to any one of several common cases: all of the atomics go to
the same memory address; some but not all of the atomics go
to a single memory address; or the atomics go to unrelated
memory locations. If multiple atomics are performed on the
same memory location, they need to be serialized. This is
necessary to maintain the observable semantic that each of
them has been performed either in full or not at all.

The Applicants believe that there remains scope for
improvements to the handling of atomic operations for thread
groups, for example in graphics processing pipelines that
include one or more shader stages.

BRIEF DESCRIPTION OF THE DRAWINGS

A number of embodiments of the technology described
herein will now be described by way of example only and
with reference to the accompanying drawings, in which:

FIG. 1 shows an exemplary computer graphics processing
system,

FIG. 2 shows schematically a graphics processing pipeline
that can be operated in the manner of the technology
described herein;

FIG. 3 shows schematically the conventional processing of
an atomic memory operation for a group of threads; and

FIG. 4A shows an atomic addition operation.

FIG. 4B shows an atomic addition operation.
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FIG. 5 is a flow chart showing the operation of the PRE-
PARE_AADD instruction.

FIG. 6 is a flow chart illustrating the operation PREFIX_
AADD atomic addition instruction.

FIG. 7A shows an alternative embodiment to the operation
depicted in FIGS. 4A and 4B.

FIG. 7B shows an alternative embodiment to the operation
depicted in FIGS. 4A and 4B.

FIG. 8A shows an alternative embodiment to the operation
depicted in FIGS. 4A and 4B.

FIG. 8B shows an alternative embodiment to the operation
depicted in FIGS. 4A and 4B.

FIG. 9A shows an alternative embodiment to the operation
depicted in FIGS. 4A and 4B.

FIG. 9B shows an alternative embodiment to the operation
depicted in FIGS. 4A and 4B.

Like reference numerals are used for like components
where appropriate in the drawings.

DETAILED DESCRIPTION

A first embodiment of the technology described herein
comprises a method of operating a data processing system
which includes an execution pipeline that includes one or
more programmable execution stages which execute instruc-
tions to perform data processing operations, and in which
execution threads may be grouped together into thread groups
in which the threads of the group are executed in lockstep, one
instruction at a time, the method comprising:
for anatomic operation to be executed for a thread group by
an execution stage of the execution pipeline, the atomic
operation having an associated arithmetic operation:

issuing to the execution stage an instruction or instructions
to determine whether there is a set of threads in the
thread group for which the atomic operation for the
threads accesses the same memory location; and to, if
such a set of threads is identified, perform the atomic
operation for the set of threads by:

providing to the second thread in the set of threads, the first

thread’s register value for the atomic operation, per-
forming for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion, and performing for each thread in the set of threads
other than the first and second threads, if any, the arith-
metic operation for the atomic operation using the
thread’s register value for the atomic operation and the
result of the arithmetic operation for the preceding
thread in the set of threads, to thereby generate for the
final thread in the identified set of threads a combined
result of the arithmetic operation for the set of threads;
and

then executing, for the identified set of threads, a single

atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument; and

the execution stage of the execution pipeline in response to

the instructions:

determining whether there is a set of threads in the thread

group for which the atomic operation for the threads
accesses the same memory location; and, if such a set of
threads is identified, performing the atomic operation
for the set of threads by:

providing to the second thread in the set of threads, the first

thread’s register value for the atomic operation;
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performing for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion; and
performing for each thread in the set of threads other than
the first and second threads, if any, the arithmetic opera-
tion for the atomic operation using the thread’s register
value for the atomic operation and the result of the
arithmetic operation for the preceding thread in the set of
threads, to thereby generate for the final thread in the
identified set of threads a combined result of the arith-
metic operation for the set of threads; and
then executing for the identified set of threads a single
atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument.
A second embodiment of the technology described herein
comprises a data processing system comprising:
an execution pipeline that includes one or more program-
mable execution stages which execute instructions to
perform data processing operations provided to the
execution pipeline by the host processor and in which
execution threads may be grouped together into thread
groups in which the threads of the group are executed in
lockstep, one instruction at a time; and
a compiler that compiles programs for the execution pipe-
line to generate instructions for execution stages of the
execution pipeline;
wherein the compiler is configured to, for an atomic opera-
tion to be executed for a thread group by an execution
stage of the execution pipeline, the atomic operation
having an associated arithmetic operation:
issue to the execution stage an instruction or instructions
to determine whether there is a set of threads in the
thread group for which the atomic operation for the
threads accesses the same memory location; and to, if
such a set of threads is identified, perform the atomic
operation for the set of threads by:
providing to the second thread in the set of threads, the
first thread’s register value for the atomic operation,
performing for the second thread in the set of threads
the arithmetic operation for the atomic operation
using the second thread’s register value for the atomic
operation and the first thread’s register value for the
atomic operation, and performing for each thread in
the set of threads other than the first and second
threads, if any, the arithmetic operation for the atomic
operation using the thread’s register value for the
atomic operation and the result of the arithmetic
operation for the preceding thread in the set of
threads, to thereby generate for the final thread in the
identified set of threads a combined result of the arith-
metic operation for the set of threads;
then executing for the identified set of threads a single
atomic memory operation to the memory location for
the atomic operation for the set of threads using the
combined result of the arithmetic operation for the set
of threads as its register argument; and
and wherein:
at least one execution stage of the execution pipeline is
configured to, in response to the instructions:
determine whether there is a set of threads in the thread
group for which the atomic operation for the threads
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accesses the same memory location; and, if such a set of
threads is identified, perform the atomic operation for
the set of threads by:
providing to the second thread in the set of threads, the first
thread’s register value for the atomic operation;

performing for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion; and

performing for each thread in the set of threads other than

the first and second threads, if any, the arithmetic opera-
tion for the atomic operation using the thread’s register
value for the atomic operation and the result of the
arithmetic operation for the preceding thread in the set of
threads, to thereby generate for the final thread in the
identified set of threads a combined result of the arith-
metic operation for the set of threads; and

then executing for the identified set of threads a single

atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument.

The technology described herein relates to the execution of
atomic memory operations in data processing pipelines in
which execution threads may be grouped together into thread
groups (“warps”). In the technology described herein, when
an atomic operation is to be performed for a thread group, the
execution stage that is to perform the atomic operation iden-
tifies a set of threads in the thread group that will access the
same address in memory for the atomic operation (if present),
and then performs the atomic operation for those threads by
combining the results of the arithmetic operation for the
atomic memory operation for those threads without issuing
the atomic memory access request for any of the threads, and
then issuing a single atomic memory access request for the set
of' threads, using the combined result for the set of threads, to
perform the atomic operation for the set of threads. This
operation is triggered by the inclusion of appropriate instruc-
tions in the instruction stream for the execution stage (unit) in
question.

This effectively “merges” or “coalesces™ the individual
atomic memory requests for the threads in the set of threads
into a single atomic memory access request. This can then
facilitate reducing the number of atomic memory accesses
that actually need to be performed against memory for a
thread group, whilst (as will be discussed further below) still
fully retaining the semantics of the atomic operation. This can
then significantly improve atomic memory operation perfor-
mance and lead to reduced power consumption (e.g. due to
reduced cache activity).

As will be discussed further below, the above steps are
required for both no return and return atomics, but for return
atomics further steps may be required (and are in an embodi-
ment performed).

As discussed above, it is believed that the technology
described herein will have particular application in graphics
processing systems. Thus the data processing system in an
embodiment comprises a graphics processing system, the
execution pipeline in an embodiment comprises a graphics
processing pipeline, and the execution stages in an embodi-
ment comprise one or more programmable graphics shading
stages (shaders) which execute graphics shader programs to
perform graphics processing operations. However, the tech-
nology described herein is equally applicable to other forms
of data processing system, e.g. having processing units with
lock-step parallelism, such as in CPUs with SIMD instruc-
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tions (where atomic-merging across SIMD lanes could then
be done in a corresponding manner).

The atomic memory operations that can be handled in the
manner of the technology described herein may be any suit-
able and desired atomic memory operations. In an embodi-
ment there is set of particular, selected atomic memory opera-
tions that will be handled in the manner of the technology
described herein (and so it is determined if any atomic
memory operations of the particular type or types are
present). In an embodiment, the atomic memory operations
that will be handled in the manner of the technology described
herein include atomic operations for which the arithmetic
operation that is performed as part of the atomic is associa-
tive, and in an embodiment both commutative and associa-
tive. However, this is not essential and the technology
described herein can also be used for other atomic operations,
such as Swap (Exchange) and Compare-And-Swap (Com-
pare-and-Exchange) that do not have these properties, if
desired.

In an embodiment, the atomic memory operations that will
be handled in the manner of the technology described herein
comprise one or more of, and in an embodiment all of: Integer
Add; Bitwise AND, OR, XOR; Minimum Value; Maximum
Value; Saturating unsigned integer add; Integer multiply;
floating-point add; floating point multiply; integer add,
modulo a constant K.

The atomic memory operations that are handled in the
manner of the technology described herein in an embodiment
have an appropriate “identity value”. This “identity value” is
a value for the arithmetic operation for the atomic operation
that will leave the value that the identity value is combined
with for the arithmetic operation unchanged (i.e. such that if
a given arithmetic operation is denoted with the operator %,
then arithmetic operation’s identity value is a value V such
that for all possible input values X, V % X=X % V=X). Thus,
for example, for an integer ADD operation the identity value
is “0”, for abitwise OR or bitwise XOR operation, the identity
value="0", for a bitwise AND, the identity value is an all ones
bit vector, for a minimum value operation, the identity value
is the largest representable number in the memory value’s
format, and for amaximum value operation, the identity value
is the smallest representable number in the memory values’
format (and so on).

Identity values for other atomic memory operations can be
determined correspondingly.

The determining of whether there is a set of threads in the
thread group for which the atomic operation for the threads
accesses the same memory location can be performed in any
suitable and desired manner. In an embodiment there are
more than two threads in the set of threads.

In an embodiment the memory addresses for the atomic
operation across the threads in the thread group are compared,
and the comparison result then used to identify a set of threads
in the thread group that all use the same memory address (if
present). This comparison and selection operation can be
performed as desired. For example, the addresses of every
thread could simply be compared to the address of the first
thread, and then the set of threads formed from the first thread
and whichever other threads in the thread group use the same
memory address. Alternatively, a comparison of the addresses
between every possible pair of threads could be performed,
and the comparison result used to identify the largest set of
threads that share an address. In an embodiment, the execu-
tion stage is configured to use a particular, in an embodiment
predetermined, process for this, whenever it receives the rel-
evant instruction for execution.
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It would also be possible to determine and identify more
than one set of threads in the thread group for which the
atomic operation for the threads share the same address. In
this case each set of threads that shares the same address
would perform its atomic operation in the manner of the
technology described herein.

Where a set of threads for which the atomic operation
accesses the same memory location has been identified, then
in an embodiment metadata that allows this set of threads to
be identified, for example, and in an embodiment, in the form
of'a bitmap, is generated and stored. This will then allow later
operations and instructions to identify which threads in the
thread group belong to the set in question. This metadata (e.g.
bitmap) may be stored as desired, for example as sideband
information related to the atomic processing, or in a register
associated with one of the threads in the set. In an embodi-
ment, the metadata indicating which threads are in the set is
stored in a register associated with the first thread in the set.
Where the set of threads starts with a thread that is not the first
thread in the thread group, a sideband signal could be used to
indicate which thread has this metadata.

To combine the results of the arithmetic operation for the
threads in the set, the first thread’s register value for the
atomic operation is provided to the second thread in the set of
threads, the arithmetic operation for the atomic operation is
then performed for the second thread using the second
thread’s register value for the atomic operation and the first
thread’s register value for the atomic operation, and the arith-
metic operation for the atomic operation is then performed for
each thread in the set of threads other than the first and second
threads (for the subsequent (remaining) threads (if any) in the
set of threads) using the thread’s register value for the atomic
operation and the result of the arithmetic operation for the
preceding thread in the set of threads.

In an embodiment, the register value for the atomic opera-
tion for the first thread is provided to the second thread by
performing for the first thread in the set of threads, the arith-
metic operation for the atomic operation using an identity
value for the arithmetic operation for the atomic operation
and the first thread’s register value for the atomic operation.
However, alternative arrangements for providing the first
thread’s register value to the second thread could be used if
desired. For example, a “move” (“bypass™) operation or
instruction that transfers the register value to the second
thread could be used, if desired. (In general any operation that
does not change the register value and that provides it to the
second thread could be used, such as any arithmetic operation
with the arithmetic operation’s identity value.) Performing
the arithmetic operation with the identity value for this pur-
pose may be advantageous, as it can avoid the need to other-
wise indicate or identify that a special operation needs to be
performed for the thread in question.

Thus, in an embodiment, the first thread in the set takes the
arithmetic operation’s identity value and combines that value
with its “register’” atomic input value (performs the arithmetic
operation for the atomic using the identity value and its reg-
ister value) and then passes the result to the second thread in
the set. The second thread in an embodiment then combines
the result it received from the first thread with its own “reg-
ister” atomic input value (performs the arithmetic operation
for the atomic using the identity value and its register value)
and passes that result to the third thread, and so on, until all the
threads in the set have produced a result value. The final result
from the last of the threads in the set is then used as the
“register” argument for the single atomic memory access
operation for the set of threads (which can then be per-
formed).
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This process could be performed in a serial manner, orin a
parallel prefix manner (where that is possible).

The combined result of the arithmetic operation for the set
of threads is in an embodiment stored for use by the subse-
quent single atomic memory access operation to the memory
location for the atomic operation for the set of threads. Again,
this combined result could be stored as sideband information
or in a register associated with one or the threads in the set. In
an embodiment it is stored in a register associated with the
first thread in the set.

The above operation of performing the combined and
merged atomic operation will provide the appropriate result
value in the memory location for the atomic operation. Thus
for a “no return” atomic, the process can be stopped at this
point.

However, where the atomic is of the “return” variant, it is
also necessary for each individual thread to return the datum
that was present at the memory location before the atomic
operation for that individual thread was performed. To
achieve this, as well as performing the single merged atomic
operation to provide the final result in the memory location, it
is also necessary to ensure that each individual thread in the
set returns its appropriate value.

To facilitate this, in an embodiment of the technology
described herein, the first thread in the set stores the identity
value for the arithmetic operation (in an embodiment in a
register associated with the thread), and each subsequent
thread in the set when it performs the arithmetic operation
also stores the result from the previous thread in the set (e.g.,
and in an embodiment, in a register associated with the thread
in question). Then, when the single “merged” atomic opera-
tion is performed, the result of the merged atomic operation
(i.e. the original value in the memory location) is in an
embodiment distributed to all the threads in the set, and each
thread then performs the arithmetic operation for the atomic
operation to combine the value in the memory location with
the value that it had stored (e.g. in its register). This will then
generate the appropriate “return” values for each thread in the
set.

In these arrangements the result of the “merged” atomic
memory access request could, e.g., be stored in a second
register for each thread (such that each thread would then
have stored for it the merged atomic operation result value) or,
alternatively, the result value could be stored in a register
associated with one of the threads (such as, and in an embodi-
ment, the first thread in the set), and the other threads in the set
could then use that register value for their arithmetic opera-
tion.

Thus, in an embodiment, as well as each thread in the set
performing the arithmetic operation and passing the result to
the next thread in the set, there is also stored for each thread
the arithmetic operation result for the previous thread in the
set, and the process further comprises distributing the result
of'the single atomic memory access request to all the threads
in the set, and each thread in the set then performing the
arithmetic operation for the atomic operation to combine the
result value with its own stored value.

In these arrangements, instead of the first thread perform-
ing the arithmetic operation using the identity value to return
its register value, any equivalent operation or process that can
achieve that (as discussed above) could be used instead, if
desired. In this case, it would not or may not be necessary for
the first thread to store the identity value for the arithmetic
operation, if desired. The metadata indicating the threads in
the set could, e.g., be used to identify the thread for which this
operation needs to be performed.
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The operation in the manner of the technology described
herein is triggered by sending appropriate instructions to the
execution pipeline. In an embodiment, two instructions are
used to trigger the operation in the manner of the present
embodiment, a “pre-processing” instruction, and a “modi-
fied” thread group atomic instruction. The pre-processing
instruction in an embodiment triggers the execution unit to
determine whether there is a set of threads in the thread group
that all access the same memory address, and if there is, to
perform the arithmetic operation, and where desired (e.g. in
the case of a “return” variant atomic), to also store the neces-
sary argument value.

The output of this pre-processing instruction is in an
embodiment the combined arithmetic operation result value
for the set of threads and the metadata, e.g. bitmap, indicating
the threads in the thread group that are in the set.

The modified thread group atomic instruction in an
embodiment receives as its input arguments the memory
address for the set of threads in question, the combined arith-
metic operation result value for the set of threads, and the
thread set-indicating metadata derived from the pre-process-
ing instruction, and triggers the use of the thread set metadata
to identify the threads in the set, and issues one atomic
memory access operation for the threads in the set combined.
Where the atomic operation is of the “return” variant, then the
modified thread group atomic instruction in an embodiment
also operates to distribute the value in the memory location to
all the threads that are members of the set.

Where the atomic operation is of the “return” type, then as
discussed above, the threads in the thread group then need to
perform the arithmetic operation individually. In an embodi-
ment this is achieved by including a further arithmetic
instruction that corresponds to the arithmetic operation to
trigger each thread to perform the arithmetic operation appro-
priately. (Although as discussed above, instead of the first
thread performing the arithmetic operation using the identity
value to return its register value, any equivalent operation or
process that can achieve that (as discussed above) could be
used instead, if desired.)

The above deals with the operation for the threads that are
members of the set that use the same memory location. If
there are other threads in the thread group that are not mem-
bers of the set, then those threads in an embodiment perform
their atomic operations in the conventional manner. To facili-
tate this, the pre-processing instruction in an embodiment
triggers each thread in the thread group not in the set to store
the identity value for the arithmetic operation in question, and
the modified thread group atomic instruction in an embodi-
ment issues one atomic memory access request for each
thread in the thread group that is not a member of the set (and
for “return”-type atomic operations, also returns the result of
the atomic operations for those threads to each individual
thread appropriately).

Similarly, where the atomic operation is of the “return”
type, then as discussed above, the threads not in the set of
threads will also need to perform the arithmetic operation
individually. In an embodiment this is achieved by including
a further arithmetic instruction that corresponds to the arith-
metic operation to trigger each thread to perform the arith-
metic operation appropriately.

In these arrangements, instead of the threads not in the set
performing the arithmetic operation using the identity value
to return their register values, any equivalent operation or
process that can achieve that (as discussed above) could be
used instead, if desired. In this use, it would not or may not be
necessary for the threads to store the identity value for the
arithmetic operation, if desired. The metadata indicating the
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threads in the set could, e.g., be used to identify the threads for
which this operation needs to be performed.

In the case where no set of plural threads that use the same
memory location is identified, then the atomic operation
should be and in an embodiment is performed individually for
each thread in the thread group, e.g., and in an embodiment,
in the manner discussed above for threads that are not in the
set of plural threads that use the same memory location, or in
any other suitable manner.

The instructions for performing the above operation are
included in the instruction stream for an execution stage of the
execution pipeline by a compiler for the execution pipeline.
Thus, in the case of a graphics processing system, the shader
compiler for the graphics processing pipeline in an embodi-
ment performs this operation. The compiler may, e.g., and in
an embodiment does, run on a host processor of the data
processing system that includes the execution pipeline (with
the execution pipeline then being on another processor, such
as a graphics processor that is associated with the host pro-
cessor (such that the compiler and compiled code all run on
separate processors within the overall data processing sys-
tem, e.g. graphics processing system)). However, other
arrangements would be possible, such as a compiler running
on the same processor as the compiled code, or the compiler
being run on a separate processor, such as the program being
pre-compiled on a separate system and being distributed in a
compiled form.

The compiler may, for example, recognise the presence of
an atomic operation in the instruction stream, and then issue
appropriate instruction sequences as discussed above to trig-
ger the operation in the manner of the present embodiment by
the execution unit. The compiler could also, as appropriate,
either include or omit any post-atomic memory access arith-
metic operation instruction depending on whether the atomic
is of the return or no return type (the atomic operation will
itself specify this, and the compiler will be able to identify this
and then configure its instructions accordingly). The compiler
could also, e.g., recognise if the application contains a
“return” atomic, but doesn’t actually use the result, and then
optimise the atomic into a “no return” atomic, if desired.

The technology described herein also extends to the com-
piler itself. Thus, another embodiment of the technology
described herein comprises a compiler that compiles pro-
grams to generate instructions for execution stages of an
execution pipeline that includes one or more programmable
execution stages that execute instructions to perform data
processing operations, and in which execution threads may be
grouped together into thread groups in which the threads of
the group are executed in lockstep, one instruction at a time,
wherein the compiler is configured to for an atomic operation
to be executed for a thread group by an execution stage of the
execution pipeline, the atomic operation having an associated
arithmetic operation:

issue to the execution stage an instruction or instructions to

determine whether there is a set of threads in the thread
group for which the atomic operation for the threads
accesses the same memory location; and to, if such a set
of threads is identified, perform the atomic operation for
the set of threads by:

providing to the second thread in the set of threads, the first

thread’s register value for the atomic operation, per-
forming for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion, and performing for each thread in the set of threads
other than the first and second threads, if any, the arith-
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metic operation for the atomic operation using the
thread’s register value for the atomic operation and the
result of the arithmetic operation for the preceding
thread in the set of threads, to thereby generate for the
final thread in the identified set of threads a combined
result of the arithmetic operation for the set of threads;
and
then executing, for the identified set of threads, a single
atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument.
Another embodiment of the technology described herein
comprises a method of compiling a program to generate
instructions for an execution stage of an execution pipeline
that includes one or more programmable execution stages that
execute instructions to perform data processing operations,
and in which execution threads may be grouped together into
thread groups in which the threads of the group are executed
in lockstep, one instruction at a time, the method comprising:
for anatomic operation to be executed for a thread group by
an execution stage of the execution pipeline, the atomic
operation having an associated arithmetic operation:

issuing to the execution stage an instruction or instructions
to determine whether there is a set of threads in the
thread group for which the atomic operation for the
threads accesses the same memory location; and to, if
such a set of threads is identified, perform the atomic
operation for the set of threads by:

providing to the second thread in the set of threads, the first

thread’s register value for the atomic operation, per-
forming for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion, and performing for each thread in the set of threads
other than the first and second threads, if any, the arith-
metic operation for the atomic operation using the
thread’s register value for the atomic operation and the
result of the arithmetic operation for the preceding
thread in the set of threads, to thereby generate for the
final thread in the identified set of threads a combined
result of the arithmetic operation for the set of threads;
and

then executing, for the identified set of threads, a single

atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument.

The technology described herein also extends to an execu-
tion pipeline having execution stages that can perform atom-
ics processing in response to (and using) the instructions of
the technology described herein.

Thus, another embodiment of the technology described
herein comprises an execution pipeline for a data processing
system that includes one or more programmable execution
stages which execute instructions to perform data processing
operations, and in which execution threads may be grouped
together into thread groups in which the threads of the group
are executed in lockstep, one instruction at a time, wherein:

at least one execution stage of the execution pipeline is

configured to, when executing instructions in an instruc-
tion stream, in response to a set of instructions in the
instruction stream for performing an atomic operation
provided by a compiler for the execution stage:
determine whether there is a set of threads in the thread
group for which the atomic operation for the threads
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accesses the same memory location; and, if such a set of
threads is identified, perform the atomic operation for
the set of threads by:
providing to the second thread in the set of threads, the first
thread’s register value for the atomic operation;
performing for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion; and
performing for each thread in the set of threads other than
the first and second threads, if any, the arithmetic opera-
tion for the atomic operation using the thread’s register
value for the atomic operation and the result of the
arithmetic operation for the preceding thread in the set of
threads,
to thereby generate for the final thread in the identified set
of threads a combined result of the arithmetic operation
for the set of threads; and
then executing for the identified set of threads a single
atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument for the set of threads.
Another embodiment of the technology described herein
comprises a method of operating an execution pipeline for a
data processing system that includes one or more program-
mable execution stages which execute instructions to perform
data processing operations, and in which execution threads
may be grouped together into thread groups in which the
threads of the group are executed in lockstep, one instruction
at a time, the method comprising:
at least one execution stage of the execution pipeline, when
executing instructions in an instruction stream, in
response to a set of instructions in the instruction stream
for performing an atomic operation provided by a com-
piler for the execution stage:
determining whether there is a set of threads in the thread
group for which the atomic operation for the threads
accesses the same memory location; and, if such a set of
threads is identified, performing the atomic operation
for the set of threads by:
providing to the second thread in the set of threads, the first
thread’s register value for the atomic operation;
performing for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion; and
performing for each thread in the set of threads other than
the first and second threads, if any, the arithmetic opera-
tion for the atomic operation using the thread’s register
value for the atomic operation and the result of the
arithmetic operation for the preceding thread in the set of
threads,
to thereby generate for the final thread in the identified set
of threads a combined result of the arithmetic operation
for the set of threads; and
then executing for the identified set of threads a single
atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument for the set of threads.
As will be appreciated by those skilled in the art, these
embodiments of the technology described herein can and in
embodiments do include any one or more or all of the features
of the technology described herein, as appropriate.
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In the case of a graphics processing pipeline, the execution
units (stages) in an embodiment comprise programmable,
shading stages of the graphics processing pipeline such as the
vertex shader, fragment shader, etc. These stages can be
implemented as desired and in any suitable manner, and can
perform any desired and suitable shading, e.g. vertex shading,
fragment shading, etc., functions, respectively and as appro-
priate. In the case of a fragment shader, for example, the
fragment shader may render a primitive or primitives to gen-
erate a set of render output values, e.g. representing a frame
for display. These output values may then be exported to
external memory for storage and use, such as to a frame buffer
for a display.

In an embodiment all the execution stages (each execution
stage) of the execution pipeline can and does operate in the
manner of the technology described herein.

Each programmable processing stage (execution unit) may
comprise any suitable programmable hardware element such
as programmable processing circuitry. Each programmable
processing stage may be provided as a separate circuit ele-
mentto other programmable stages of the processing pipeline
or the programmable processing stages may share some or all
of their programmable processing circuitry (that is then dif-
ferently programmed to serve as the desired programmable
processing stage).

As well as the programmable processing (shader) stages, a
graphics processing pipeline may also contain any other suit-
able and desired processing stages that a graphics processing
pipeline may contain such as a rasteriser, an early depth (or an
early depth and stencil) tester, a late depth (or depth and
stencil) tester, a blender, a tile buffer, a write out unit, etc.

The technology described herein can be used for all forms
of output that a graphics processing pipeline may be used to
generate, such as frames for display, render-to-texture out-
puts, etc. The output, e.g. fragment shaded, data values from
the graphics processing are in an embodiment exported to
external, e.g. main, memory, for storage and use, suchasto a
frame bufter for a display.

In some embodiments, the graphics processing pipeline
comprises, and/or is in communication with, one or more
memories and/or memory devices that store the data
described herein, and/or store software for performing the
processes described herein. The graphics processing pipeline
may also be in communication with a host microprocessor,
and/or with a display for displaying images based on the data
generated by the graphics processor.

The technology described herein is applicable to any suit-
able form or configuration of graphics processor. It is particu-
larly applicable to tile-based graphics processors and graph-
ics processing systems. Thus in an embodiment, the graphics
processing system and graphics processing pipeline are a
tile-based system and pipeline, respectively.

In an embodiment, the various functions of the technology
described herein are carried out on a single graphics process-
ing platform that generates and outputs the rendered fragment
data that is, e.g., written to the frame buffer for the display
device.

The technology described herein can be implemented in
any suitable system, such as a suitably configured micro-
processor based system. In an embodiment, the technology
described herein is implemented in a computer and/or micro-
processor based system.

The various functions of the technology described herein
can be carried out in any desired and suitable manner. For
example, the functions of the technology described herein can
be implemented in hardware or software, as desired. Thus, for
example, unless otherwise indicated, the various functional
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elements and “means” of the technology described herein
may comprise a suitable processor or processors, controller or
controllers, functional units, circuitry, processing logic,
microprocessor arrangements, etc., that are operable to per-
form the various functions, etc., such as appropriately dedi-
cated hardware elements and/or programmable hardware ele-
ments that can be programmed to operate in the desired
manner.

It should also be noted here that, as will be appreciated by
those skilled in the art, the various functions, etc., of the
technology described herein may be duplicated and/or carried
out in parallel on a given processor. Equally, the various
processing stages may share processing circuitry, etc., if
desired.

Subject to any hardware necessary to carry out the specific
functions discussed above, the data processing system and
pipeline can otherwise include any one or more or all of the
usual functional units, etc., that data processing pipelines
include.

It will also be appreciated by those skilled in the art that all
of the described embodiments of the technology described
herein can, and in embodiments do, include, as appropriate,
any one or more or all of the features described herein.

The methods in accordance with the technology described
herein may be implemented at least partially using software
e.g. computer programs. It will thus be seen that when viewed
from further embodiments the technology described herein
comprises computer software specifically adapted to carry
out the methods herein described when installed on a data
processor, a computer program element comprising computer
software code portions for performing the methods herein
described when the program element is run on a data proces-
sor, and a computer program comprising code adapted to
perform all the steps of a method or of the methods herein
described when the program is run on a data processing
system. The data processor may be a microprocessor system,
a programmable FPGA (field programmable gate array), etc.

The technology described herein also extends to a com-
puter software carrier comprising such software which when
used to operate a graphics processor, renderer or micropro-
cessor system comprising a data processor causes in conjunc-
tion with said data processor said processor, renderer or sys-
tem to carry out the steps of the methods of the technology
described herein. Such a computer software carrier could be
a physical storage medium such as a ROM chip, CD ROM,
RAM, flash memory, or disk, or could be a signal such as an
electronic signal over wires, an optical signal or a radio signal
such as to a satellite or the like.

It will further be appreciated that not all steps of the meth-
ods ofthe technology described herein need be carried out by
computer software and thus from a further broad embodiment
the technology described herein comprises computer soft-
ware and such software installed on a computer software
carrier for carrying out at least one of the steps of the methods
set out herein.

The technology described herein may accordingly suitably
be embodied as a computer program product for use with a
computer system. Such an implementation may comprise a
series of computer readable instructions either fixed on a
tangible, non-transitory medium, such as a computer readable
medium, for example, diskette, CD-ROM, ROM, RAM, flash
memory, or hard disk. It could also comprise a series of
computer readable instructions transmittable to a computer
system, via a modem or other interface device, over either a
tangible medium, including but not limited to optical or ana-
logue communications lines, or intangibly using wireless
techniques, including but not limited to microwave, infrared
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or other transmission techniques. The series of computer
readable instructions embodies all or part of the functionality
previously described herein.

Those skilled in the art will appreciate that such computer
readable instructions can be written in a number of program-
ming languages for use with many computer architectures or
operating systems. Further, such instructions may be stored
using any memory technology, present or future, including
but not limited to, semiconductor, magnetic, or optical, or
transmitted using any communications technology, present or
future, including but not limited to optical, infrared, or micro-
wave. It is contemplated that such a computer program prod-
uct may be distributed as a removable medium with accom-
panying printed or electronic documentation, for example,
shrink-wrapped software, pre-loaded with a computer sys-
tem, for example, on a system ROM or fixed disk, or distrib-
uted from a server or electronic bulletin board over a network,
for example, the Internet or World Wide Web.

A number of embodiments of the technology described
herein will now be described in the context of the processing
of computer graphics for display.

FIG. 1 shows a typical computer graphics processing sys-
tem.

An application 2, such as a game, executing on a host
processor 1 will require graphics processing operations to be
performed by an associated graphics processing unit (graph-
ics processing pipeline) 3. To do this, the application will
generate API (Application Programming Interface) calls that
are interpreted by a driver 4 for the graphics process pipeline
3 that is running on the host processor 1 to generate appro-
priate commands to the graphics processor 3 to generate
graphics output required by the application 2. To facilitate
this, a set of “commands” will be provided to the graphics
processor 3 in response to commands from the application 2
running on the host system 1 for graphics output (e.g. to
generate a frame to be displayed).

FIG. 2 shows the graphics processing pipeline 3 of the
present embodiment in more detail.

The graphics processing pipeline 3 shown in FIG. 2 is a
tile-based renderer and will thus, as is known in the art,
produce tiles of a render output data array, such as an output
frame to be generated.

(As is known in the art, in tile-based rendering, rather than
the entire render output, e.g., frame, effectively being pro-
cessed in one go as in immediate mode rendering, the render
output, e.g., frame to be displayed, is divided into a plurality
of'smaller sub-regions, usually referred to as “tiles”. Each tile
(sub-region) is rendered separately (typically one-after-an-
other), and the rendered tiles (sub-regions) are then recom-
bined to provide the complete render output, e.g., frame for
display. In such arrangements, the render output is typically
divided into regularly-sized and shaped sub-regions (tiles)
(which are usually, e.g., squares or rectangles), but this is not
essential.)

The render output data array may, as is known in the art,
typically be an output frame intended for display on a display
device, such as a screen or printer, but may also, for example,
comprise intermediate data intended for use in later rendering
passes (also known as a “render to texture” output), etc.

(As is known in the art, when a computer graphics image is
to be displayed, it is usually first defined as a series of primi-
tives (polygons), which primitives are then divided (raster-
ised) into graphics fragments for graphics rendering in turn.
During a normal graphics rendering operation, the renderer
will modity the (e.g.) colour (red, green and blue, RGB) and
transparency (alpha, a) data associated with each fragment so
that the fragments can be displayed correctly. Once the frag-
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ments have fully traversed the renderer, then their associated
data values are stored in memory, ready for output, e.g. for
display.)

FIG. 2 shows the main elements and pipeline stages of the
graphics processing pipeline 3 that are relevant to the opera-
tion of the present embodiment. As will be appreciated by
those skilled in the art there may be other elements of the
graphics processing pipeline that are not illustrated in FIG. 2.
It should also be noted here that FIG. 2 is only schematic, and
that, for example, in practice the shown functional units and
pipeline stages may share significant hardware circuits, even
though they are shown schematically as separate stages in
FIG. 2. It will also be appreciated that each of the stages,
elements and units, etc., of the graphics processing pipeline as
shown in FIG. 2 may be implemented as desired and will
accordingly comprise, e.g., appropriate circuitry and/or pro-
cessing logic, etc., for performing the necessary operation
and functions.

As shown in FIG. 2, the graphics processing pipeline 3
includes a number of'stages, including vertex shader 20, a hull
shader 21, a tesselator 22, a domain shader 23, a geometry
shader 24, a rasterisation stage 25, an early Z (depth) and
stencil test stage 26, a renderer in the form of a fragment
shading stage 27, a late Z (depth) and stencil test stage 28, a
blending stage 29, a tile buffer 30 and a downsampling and
writeout (multisample resolve) stage 31.

The vertex shader 20, as is known in the art, takes the input
data values associated with the vertices, etc., defined for the
output to be generated, and processes those data values to
generate a set of corresponding “vertex shaded” output data
values for use by subsequent stages of the graphics processing
pipeline 3. The vertex shading, for example, modifies the
input data to take account of the effect of lighting in the image
to be rendered.

As is known in the art, the hull shader 21 performs opera-
tions on sets of patch control points and generates additional
data known as patch constants, the tessellation stage 22 sub-
divides geometry to create higher-order representations of the
hull, the domain shader 23 performs operations on vertices
output by the tessellation stage (similar to a vertex shader),
and the geometry shader 24 processes entire primitives such
as a triangles, points or lines. These stages together with the
vertex shader 21 effectively perform all the necessary frag-
ment frontend operations, such as transformation and lighting
operations, and primitive setup, to setup the primitives to be
rendered, in response to commands and vertex data provided
to the graphics processing pipeline 3.

The rasterisation stage 25 of the graphics processing pipe-
line 3 operates, as is known in the art, to rasterise the primi-
tives making up the render output (e.g. the image to be dis-
played) into individual graphics fragments for processing. To
do this, the rasteriser 25 receives graphics primitives for ren-
dering, rasterises the primitives to sampling points and gen-
erates graphics fragments having appropriate positions (rep-
resenting appropriate sampling positions) for rendering the
primitives.

The fragments generated by the rasteriser are then sent
onwards to the rest of the pipeline for processing.

The early Z/stencil stage 26 performs, is known in the art,
a Z (depth) test on fragments it receives from the rasteriser 25,
to see if any fragments can be discarded (culled) at this stage.
To do this, it compares the depth values of (associated with)
fragments issuing from the rasteriser 25 with the depth values
of fragments that have already been rendered (these depth
values are stored in a depth (Z) buffer that is part of the tile
buffer 30) to determine whether the new fragments will be
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occluded by fragments that have already been rendered (or
not). At the same time, an early stencil test is carried out.

Fragments that pass the fragment early Z and stencil test
stage 26 are then sent to the fragment shading stage 27. The
fragment shading stage 27 performs the appropriate fragment
processing operations on the fragments that pass the early Z
and stencil tests, so as to process the fragments to generate the
appropriate rendered fragment data, as is known in the art.

This fragment processing may include any suitable and
desired fragment shading processes, such as executing frag-
ment shader programs on the fragments, applying textures to
the fragments, applying fogging or other operations to the
fragments, etc., to generate the appropriate fragment data, as
is known in the art. In the present embodiment, the fragment
shading stage 27 is in the form of a shader pipeline (a pro-
grammable fragment shader).

There is then a “late” fragment Z and stencil test stage 28,
which carries out, inter alia, an end of pipeline depth test on
the shaded fragments to determine whether a rendered frag-
ment will actually be seen in the final image. This depth test
uses the Z-buffer value for the fragment’s position stored in
the Z-buffer in the tile buffer 30 to determine whether the
fragment data for the new fragments should replace the frag-
ment data of the fragments that have already been rendered,
by, as is known in the art, comparing the depth values of
(associated with) fragments issuing from the fragment shad-
ing stage 27 with the depth values of fragments that have
already been rendered (as stored in the depth buffer). This late
fragment depth and stencil test stage 28 also carries out any
necessary “late” alpha and/or stencil tests on the fragments.

The fragments that pass the late fragment test stage 28 are
then subjected to, if required, any necessary blending opera-
tions with fragments already stored in the tile buffer 30 in the
blender 29. Any other remaining operations necessary on the
fragments, such as dither, etc. (not shown) are also carried out
at this stage.

Finally, the (blended) output fragment data (values) are
written to the tile buffer 30 from where they can, for example,
be output to a frame buffer for display. The depth value for an
output fragment is also written appropriately to a Z-buffer
within the tile buffer 30. (The tile buffer will store, as is
known in the art, colour and depth buffers that store an appro-
priate colour, etc., or Z-value, respectively, for each sampling
point that the buffers represent (in essence for each sampling
point of a tile that is being processed).) These buffers store, as
is known in the art, an array of fragment data that represents
part (a tile) of the overall render output (e.g. image to be
displayed), with respective sets of sample values in the buft-
ers corresponding to respective pixels of the overall render
output (e.g. each 2x2 set of sample values may correspond to
an output pixel, where 4x multisampling is being used).

The tile bufter is provided as part of RAM that is located on
(local to) the graphics processing pipeline (chip).

The data from the tile buffer 30 is input to a downsampling
(multisample resolve) write out unit 31, and thence output
(written back) to an external memory output buffer, such as a
frame buffer of a display device (not shown). (The display
device could comprise, e.g., a display comprising an array of
pixels, such as a computer monitor or a printer.)

The downsampling and writeout unit 31 downsamples the
fragment data stored in the tile buffer 30 to the appropriate
resolution for the output buffer (device) (i.e. such that an array
of pixel data corresponding to the pixels of the output device
is generated), to generate output values (pixels) for output to
the output buffer.

Once a tile of the render output has been processed and its
data exported to a main memory (e.g. to a frame buffer in a
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main memory (not shown)) for storage, the next tile is then
processed, and so on, until sufficient tiles have been processed
to generate the entire render output (e.g. frame (image) to be
displayed). The process is then repeated for the next render
output (e.g. frame) and so on.

Other arrangements for the graphics processing pipeline 3
would, of course, be possible.

The above describes certain features of the operation of the
graphics processing system shown in FIG. 1. Further features
of the operation of the graphics processing system shown in
FIG. 1 in accordance with embodiments of the technology
described herein will now be described.

As can be seen from FIG. 2, the graphics processing pipe-
line 3 includes a number of programmable processing or
“shader” stages, namely the verbex shader 20, hull shader 21,
domain shader 23, geometry shader 24, and the fragment
shader 27. These programmable shader stages execute
respective shader programs that have one or more input vari-
ables and generate sets of output variables and that are pro-
vided by the application. To do this, the application 2 provides
the shader programs implemented using a high-level shader
programming language, such as GLSL, HLSL, OpenCL, etc.
These shader programs are then translated by a shader lan-
guage compiler to binary code for the target graphics process-
ing pipeline 3. This may include, as is known in the art, the
creation of one or more intermediate representations of the
program within the compiler. (The compiler may, e.g., be part
of'the driver 4, with there being a special API call to cause the
compiler to run. The compiler execution can thus be seen as
being part of the draw call preparation done by the driver in
response to API calls generated by an application).

As discussed above, each shader in the graphics processing
pipeline is a processing unit that performs graphics process-
ing by running small programs for each graphics item in a
graphics output to be generated (an “item” in this regard is
usually a vertex, a fragment or a pixel). The present embodi-
ments relate to the situation where execution threads to be
executed by a shader (where each thread corresponds to one
graphics item) have been organised into a “group” or
“bundle” of threads that are to be run in lockstep, one instruc-
tion at a time, and are to perform an atomic memory opera-
tion.

As discussed above, an “atomic” memory operation is an
operation sequence that reads a memory location, performs
an arithmetic operation between the memory value and a
register value, and then writes the result of the arithmetic
operation back to the same memory location. This sequence
of operations is carried out so that to every observer, it looks
asifthe sequence has either not been performed at all, or been
performed in its entirety. It is executed as one indivisible unit,
hence the name “atomic”. The arithmetic operation that is
performed as part of the atomic is usually a simple operation,
that is usually both commutative and associative, such as:
Integer Add; Bitwise AND, OR, XOR; Minimum Value;
Maximum Value.

Atomic memory operations typically occur in two variants:
“Return” and “NoReturn”. The “Return” variants return back
to the shader the datum that was present at the memory
location before the “atomic™ operation was performed. The
“NoReturn” variants do not return any value back to the
shader.

The present embodiments perform atomic operations for
thread groups by first identifying threads in a thread group for
which the atomic operation goes to the same memory loca-
tion. The arithmetic sub-operation associated with the atomic
operation is then used to combine the register arguments for
the identified threads, and a single “merged” atomic memory
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operation to the memory location using the combined register
arguments value as its register argument is then executed.
This has the effect that a single atomic memory operation is
performed for the identified threads, but still provides the
correct atomic semantics for any observers outside the
executing thread group itself (as what they will observe is that
of the atomic operations, either none have been performed or
all have been performed).

In the present embodiment, the register arguments for the
identified threads that go to the same memory location (ad-
dress) are combined by a prefix calculation across all the
threads that are to participate in the merged atomic. This
prefix calculation is done as follows.

First, the first thread participating in the merged atomic
operation takes the identity value for the arithmetic operation
for the atomic, and stores it in a register for the thread. The
first thread then combines the identity value with its “register”
atomic input value, and passes the result to the second thread
participating in the merged atomic. The second thread stores
the result it receives from the first thread, and combines that
value with its own “register” atomic input value, and passes
the result to the next thread participating in the merged atomic
(if any), and so on, until all of the participating threads have
stored one value received from the preceding thread and
produced a result value.

The merged “atomic” memory access operation is then
performed, using the result value from the last of the partici-
pating threads as the “register” argument for the “merged”
atomic.

Finally, the result of the merged atomic (i.e. the value
stored in the memory location) is received and distributed to
all the participating threads. Each participating thread then
performs the arithmetic operation for the atomic, to combine
the atomic result value with its own stored value from the
prefix calculation. This ensures that the correct semantics
between threads inside the thread group are obtained as well.

The arithmetic operation’s “identity value” for this process
is a value that when the arithmetic operation is performed
with another value, leaves that other value unchanged. Thus,
if a given arithmetic operation is denoted with the operator %,
the arithmetic operation’s identity value is a value V such that
for all possible input values X, V % X=X % V=X. For
example, for following arithmetic operations, the corre-
sponding identity values V are:

Integer Add: V=0

Bitwise OR, Bitwise XOR: V=0

Bitwise AND: V=an all-1s bitvector

Minimum Value: V=the largest representable number in
the memory value’s format

Maximum Value: V=the smallest representable number in
the memory value’s format.

By way of example, for a thread group containing 4 threads
(T0,T1,T2,T3), with the register values 2, 4, 6, 8 respectively,
executing an atomic integer add to a memory location M
containing the value 21, the above operation will proceed as
follows.

Firstly, as the identity value for “Integer Add” is O, the
thread T0 will store the value 0, and pass the value 2 to thread
T1.

Thread T1 will receive the value 2, and store it, and then
combine the value 2 with its own register value, resulting in
2+4=6. This value is passed to thread T2.

Thread T2 will receive the value 6, and store it, and then
combine the value 6 with its own register value, resulting in
6+6=12. This value is passed to thread T3.

Thread T3 will receive the value 12, and store it, and then
combine the value 12 with its own register value, resulting in
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12+8=20. This value 20 is then used as the “register” input
argument to a single merged atomic add to be performed for
the thread group.

The atomic add is performed, resulting in M being set to
21420=41. The result of the atomic (i.e. the old value in the
memory location M), 21, is then sent to the four threads, and
each thread then performs the arithmetic operation (in this
case an integer add) using this value and the value it stored
prior to the merged atomic operation.

Thus, T0 adds 21 to the value it stored earlier, resulting in
2140=21, T1 adds 21 to the value it stored earlier, resulting in
2142=23, T2 adds 21 to the value it stored earlier, resulting in
21+6=27, and T3 adds 21 to the value it stored earlier, result-
ing in 21+12=33.

The above operation is implemented in the present embodi-
ments by the compiler for the graphics processing pipeline
including appropriate instructions in the instruction stream
for the shader of the pipeline in question. These instructions
are a preprocessing instruction and a “modified” thread
group-atomic instruction.

The preprocessing instruction works as follows.

For an atomic operation, it receives as input argument the
memory address and the register input value. It then compares
the memory address across the various threads in the thread
group. The comparison result is then used to pick a set S of
threads in the thread group that all received (use) the same
memory address for the atomic operation. This set of threads
may compare the entire thread group, or it may be as small as
one thread, or anything in-between: the only requirement is
that all the members of the thread set S are active threads with
the same memory address input.

For each thread identified in the set S, a prefix calculation
as described above is performed. For this, as discussed above,
each of the threads stores a value. This is implemented as an
output argument from the preprocessing instruction.

For each active thread in the thread group not in the set S,
the arithmetic operation’s “identity value” is correspondingly
stored (this allows these threads to perform the atomic opera-
tion appropriately).

The last thread in the set S will output a combined argu-
ment value V as the result of its prefix calculation. This value,
together with a bitmap B indicating the threads in the set S, is
stored as a second output argument of the preprocessing
instruction.

The modified atomic instruction works as follows.

It receives as input arguments the memory address and the
register input value, and the combined argument V and bit-
map B values computed from the preprocessing instruction. It
then uses the bitmap B to identify the threads in the set S, and
issues one atomic memory operation for the set of threads S
combined, and one atomic memory operation for each active
thread in the thread group that is not a member of the set S.

When the atomic operation for the set S returns a result (i.e.
the value in the memory location), that result is distributed to
all threads that are members of the set S.

When the other atomic operations (the ones for threads that
were not members of the set S) are performed, the respective
results are returned to each individual thread, as appropriate.

After these two instructions have been executed, each
active thread in the thread group will have two values: the first
one being the value that was stored in the prefix calculation of
the preprocessing instruction, and the second one being the
atomic operation result value returned by the atomic memory
operation of the modified thread group atomic instruction.
These two values are then combined by executing an arith-
metic instruction that corresponds to the arithmetic operation
for the atomic operation, to give the desired result for the
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atomic operation for each individual thread in the thread
group. This sequence thus provides the correct atomic-se-
mantics for the thread group as a whole.

The implementation described above provides support for
the “Return” variant of atomics operation.

For a “NoReturn” variant similar instructions are used, but
for the preprocessing instruction, the storing of the preceding
thread’s result value and the identity values for later use are
skipped, as is the returning of the results of the atomic
memory operations to the threads, and the subsequent arith-
metic instruction that corresponds to the arithmetic operation
for the atomic operation.

The compiler can, e.g., determine whether the atomic
being executed is a Return or NoReturn type, and include the
appropriate instructions in the instruction stream for the
execution unit (shader) accordingly.

FIGS. 3 to 9 illustrate various embodiments of the above
operation.

FIG. 3 illustrates, for comparison purposes, the conven-
tional processing of an atomic operation (which in this case is
an atomic ADD operation), for a thread group consisting of
four threads, A, B, C and D. As shown in FIG. 3, each thread
has a corresponding pair of registers R0, R1 40 assigned to it
and there are two memory addresses 41, A0 and A1, storing
the values to be used for the atomic add operation (in this case
100 and 200, respectively).

The atomic ADD instruction 42 is then executed for each
thread in the group. As shown in FIG. 3, the atomic ADD
instruction in respect of thread A indicates that the value in the
memory address A0 should be incremented by one, with the
value in the memory address A0 being written to the register
RO for the thread A. Correspondingly, for the thread B, the
atomic ADD operation is to increment the value in the
memory address Al by two (+2) and to store the value in the
memory address Al in the register R0 associated with the
thread B. For the thread C, the atomic ADD operation is to add
five (+5) to the value in the memory address A0, and store that
current memory value in the register R0 associated with the
thread C. For the thread D, the atomic addition operation is to
add three (+3) to the current value stored in the memory
address A0 and store the current value in the memory address
A0 in the register R0 associated with the thread D.

As shown in FIG. 3, to execute these instructions, an
atomic memory access request 43 is sent for each respective
thread in the thread group.

Following this operation, the values stored in the memory
address A0 will, as shown in FIG. 3, be 109 (corresponding to
the original value 100, +1 for the thread A, +5 for the thread
C and +3 for the thread D), and the value stored in the memory
address Al will be 202, corresponding to the original value
200 in that memory address +2 for the thread B.

Correspondingly, the RO registers for each respective
thread A, B, C, D, will store the values 100, 200, 101 and 106,
respectively.

Thus the final state of the registers 44 and the memory
addresses 45 will be as shown in FIG. 3. It can be seen that in
this process four separate atomic memory access requests 43
are issued, one for each thread in the thread group.

FIGS. 4A and 4B shows the corresponding atomic addition
operations for the threads A, B, C, D, but when performed in
accordance with a first embodiment of the technology
described herein.

In this case, as shown in FIG. 4A, the initial state of the
register file 40 and memory 41 is the same as for the conven-
tional atomic addition operation arrangement.

However, as shown in FIG. 4A, rather than simply issuing
and executing the atomic addition operation for each thread in
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the thread group separately, instead a “prepare atomic addi-
tion” (PREPARE_AADD) preprocessing instruction 50 is
executed for each thread.

This causes the execution unit to first identify which
threads in the thread group wish to access the same address in
memory 51 (and thus in this case identifies the threads A, C
and D as all accessing the memory address A0), and then
prepare an address bitmap (in this case having the form 1011)
to indicate which threads in the thread group wish to access
the same location in memory.

As well as identifying which threads wish to access the
same memory address, this prepare instruction also triggers a
prefix operation 52 to store the identity value for the addition
operation (which is “0”) in the register file for the first thread
in the set of threads A, C and D that share the same memory
address (thus the thread A in this case), and to then perform
the arithmetic ADD operation using that identity value for the
first thread in the set (thread A) and provide the result to the
next thread in the subset of the threads (so thus the increment
value +1 from the atomic addition operation for the thread A
is provided to the thread C). The next thread in the set (thread
C) then stores that incremental value in its register R0, and
performs its increment atomic addition operation on that
value, to thereby pass an accumulated increment value of 6 to
the final thread D in the set of threads that share the same
memory address. The thread D then again stores the accumu-
lated increment value it receives from the thread C in its
register R0, and performs its atomic addition operation using
that value to generate an accumulated (combined) increment
value 9 for the set of threads sharing the memory address as a
whole.

The address comparison bitmap (1011) and the accumu-
lated (combined) increment value (9) are then stored as side-
band signals 46, 49 for the use of the next instruction (this will
be discussed further below).

Thread B, not being part of the set of threads that access the
same memory location, stores the identity value O in its reg-
ister R0, as shown in FIG. 4A.

FIG. 5 is a flowchart showing the operation of the PRE-
PARE_AADD instruction.

As shown in FIG. 5, the first thread participating in the
atomic operation is identified (step 60), the address of that
first thread is then compared to the address of all the other
threads in the thread group for the atomic operation (step 61),
and a bitmap of which threads have identical addresses to the
first thread is generated (step 62).

The identity value (in this case the value 0) is then stored in
the register file for the first thread (step 63) and the increment
value of the first thread’s operation is used as an initial accu-
mulator value (step 64). Then, for all threads beyond the first
(step 65), it is determined if the address of the current thread
is identical to the address of the first thread (step 66). If not,
the identity value (in this case the value 0) is stored into the
register file for the current thread (step 67) and the process
then moves on to the next thread (step 68).

On the other hand, if the address of the current thread is
found to be identical to the address of the first thread, then the
current value of the accumulator is stored into the register file
for the current thread (step 69) and the current thread’s incre-
ment value is added to the accumulated value (step 70). The
process then moves on to the next thread (step 68). Once all
the threads in the thread group have been processed in this
way, then the address comparison bitmap and the incre-
mented accumulator value are stored as a sideband signal for
the next instruction (step 71).

Once the prepare atomic addition instruction has been
executed for each thread in the thread group, the next instruc-



US 9,256,466 B2

23

tion, a prefix atomic addition (PREFIX_AADD) instruction
53 is executed for the threads in the thread group. This
instruction triggers the sending of corresponding atomic
memory access requests 54, one for the set of threads A, C, D
sharing the same memory location (as indicated by the
address match bitmap), and one for the other thread (thread
B). The atomic memory access requests also include the
relevant increment value for the atomic memory access
request as shown in FIG. 4A (so the atomic memory access
request for the “merged” atomic operation includes the rel-
evant accumulated (combined) increment value for the shared
atomic memory access request (+9 in this case) as shown in
FIG. 4A).

The results of the atomic memory access requests (i.e. the
value currently stored in the indicated memory address) are
written to the registers R1 for each respective thread 55 as
shown in FIG. 4B (thus, for the “merged” atomic operation,
the result of atomic memory access request is written to a
register file for each thread indicated by the bitmap for the
atomic memory access request), and the corresponding val-
ues written to the memory addresses 56 are the original value
in the memory address incremented by the indicated incre-
ment values in the atomic memory access requests (thus 109
for the memory address A0 and 202 for the memory address
Al).

FIG. 6 is a flowchart illustrating the operation PREFIX_
AADD atomic addition instruction. As shown in FIG. 6, for
the respective set of threads that have been identified as using
the same memory location, a single atomic memory request
using the address of the first thread and the final value of the
accumulator (the accumulated (combined) increment value)
is issued (step 80). Then for each thread with a 0 bit in the
address comparison bitmap (i.e. for each thread that is not part
of the set of identified threads sharing the same memory
address) (step 81) a separate atomic memory request is issued
using the address and the increment value of the respective
thread (step 82). This is continued until all the threads have
been processed (step 83).

As shown in FIG. 4B, following the PREFIX_AADD
instruction operation, the final values for the atomic operation
for each individual thread can be generated by using normal
ADD operations 56 to add the two register values for each
thread. This then provides the appropriate results in the reg-
ister file 57 for each thread and at the appropriate memory
addresses 58, as shown in FIG. 4B.

It can be seen from the operation illustrated in FIGS. 4A
and 4B, that a single “merged” atomic memory access request
is issued for all threads in the thread group that are to use the
same memory address for their atomic operation as the first
thread in the thread group. In this way, a reduced number of
atomic memory access requests is required to perform the
atomic operation for the thread group, as compared to the
conventional arrangement shown in FIG. 3.

FIGS. 7A and 7B show an alternative embodiment to the
operation shown in FIGS. 4A and 4B. In this arrangement, the
operation is basically similar to that shown in FIGS. 4A and
4B, but instead of providing the address bitmap as a sideband
signal, it is, as shown in FIGS. 7A and 7B, regenerated for
each of the instructions that are executed. To facilitate this, as
shown in FIG. 7A, each instruction also carries the relevant
memory address to be used for the thread, so that the address
match bitmap can be regenerated for each instruction.

Also, the final accumulated increment value (9 in this
example) is stored in the register file 90 for the first thread A,
rather than being provided as a sideband signal.
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These features avoid the need for any sideband signals to
convey the address match bitmap and the accumulated incre-
ment value.

Furthermore, the result of the atomic memory access
request is only written to the register file 91 of the first thread
in the set of threads that have been identified as sharing a
common memory address (thus the thread A in this example).
Then, as shown in FIG. 7B, to perform the final addition
operation to generate the appropriate values for each indi-
vidual thread, an instruction 92 that picks one operand from
the first thread in the set of threads that share a memory
location (thread A in this example) together with the other
operand from the register file of the thread in question is used
to perform the final additions. Thus, for example, as shown in
FIG. 7B, for the thread C, the final atomic addition operation
will add the value from register R1 for thread A to the value in
register R0 for the thread C, and store the result in register R0
for C to generate the correct atomic operation result.

FIGS. 8A and 8B show another embodiment of the tech-
nology described herein, again corresponding to the opera-
tion shown in FIGS. 4A and 4B. In this arrangement, the
address match bitmap is stored, as shown in FIG. 8A, in the
register file 100 for the first thread (thread A) and the final
accumulated increment value (the value 9) is passed in a
sideband signal 101. Like in the arrangement shown in FIGS.
7A and 7B, the result of the atomic memory access request for
the set of threads that use the same memory location is only
written to a register file for the first thread in that set of
threads.

Then, as shown in FIG. 8B, when performing the final
addition operation 102, each thread in the set of threads that
use the same memory address pick the address match bitmap
and one operand from the first thread (thread A), and the other
operand from the current thread.

FIGS. 9A and 9B show a further embodiment of the opera-
tion of the technology described herein, again corresponding
to the arrangement shown in FIGS. 4A and 4B. In this case
both the address match bitmap and the final accumulated
increment value are stored, as shown in FIG. 9A, in the
register file 110 for the first thread in the set of threads that use
the same memory address (thread A). In this case, all three
instructions require two register operands (together with the
memory address and an increment value, as needed).

Like in the arrangement shown in FIGS. 8A and 8B, the
result of the atomic memory access request is only written to
the first thread of the set of threads that use a common
memory address, and the final atomic ADD instruction uses
the address match bitmap and one operand from the first
thread within the set of threads that use the common memory
address, and the other operand from the thread in question.

The above embodiments show operation for the “return”
variant of the atomic operation. As discussed above, a “no
return” variant of these embodiments would be implemented
by skipping the storing of the intermediate values for each
thread in the PREPARE_AADD operation, by not storing the
result of memory atomic access request for the threads, and
by not executing the final atomic addition operation to gen-
erate the individual values for each thread (although for the
arrangements shown in FIGS. 8 and 9, the address match
bitmap will still need to be stored for use by the later instruc-
tions).

Also, where a set of plural threads that use the same
memory location cannot be identified (i.e. all the threads in
the thread group have different addresses), then the atomic
operation is performed individually for each thread in the
thread group, e.g. using the process shown in FIG. 3.
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Also, although the above embodiments have been
described with reference to an atomic addition operation, the
above arrangements can correspondingly be used with other
atomic operations that, for example, are at least approxi-
mately commutative and associative and have an identifiable
identity value. Thus, other atomic operations may be imple-
mented as appropriate variants of these instructions.

Examples of atomic operations that the present embodi-
ments can be applied to (and their corresponding identity
values, V) are:

Integer Add: V=0

Bitwise OR, Bitwise XOR: V=0

Bitwise AND: V=an all-1s bitvector

Minimum Value: V=the largest representable number in
the memory value’s format

Maximum Value: V=the smallest representable number in
the memory value’s format

Saturating unsigned integer add: V=0

Integer multiply: V=1

Floating-point add: V=-0.0

Floating-point multiply: V=1.0

Integer add, modulo a constant K: V=0 (A variant of this
operation can occur in some GPUs, in the form of an atomic
increment/decrement instruction where the “register” input is
constant 1, and the value K is provided as an actual argument).

The embodiment can also be used for Swap and Compare-
and-Swap atomic operations. For example, for a Swap atomic
operation, there will be no need for a final post-addition step,
the combining of the atomic register arguments could be done
by simply shifting the values to the right for each thread in the
set of threads that use the same memory location, and the
memory value (the result of the atomic access request) written
into the register file for the first thread in the set. A Compare-
and-Swap atomic could be performed with corresponding
appropriate modifications to the above process.

Various alternatives and additions to the above embodi-
ments would be possible, if desired.

For example, instead of the first thread (and the threads not
in the set of threads that access the same memory address)
performing the arithmetic operation using the identity value
to pass on and/or return its register value, any equivalent
operation or process, such as a move instruction, that can
achieve that (as discussed above) could be used instead, if
desired. In this case, it would not or may not be necessary for
these threads to store the identity value for the arithmetic
operation. The metadata indicating the threads in the set
could, e.g., be used to identify the thread or threads for which
this operation needs to be performed.

The prefix operation described above is a serial operation.
Where the operations supported are associative, it would be
possible to perform a “parallel prefix operation” instead of the
serial prefix operation described. This can cut latency consid-
erably, especially for large thread group sizes. Examples of
well-known parallel prefix approaches that could be used to
cut latency from O(n) to O(log n) include the “Brent-Kung”
and the “Kogge-Stone” parallel prefix networks.

It would also be possible to, instead of just identifying a
single set S of threads that use the same memory location, to
identify two or more such sets: S1, S2, S3 . .. . Inthis case, the
prefix operation must be carried out for each set separately,
and one atomic operation is issued for each of the sets.

In the above embodiments, the memory address for each
thread is compared to that of the first thread in the thread
group to form the set of threads that are processed using the
merged atomic. Other arrangements for this would be pos-
sible.
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For example, a comparison between every possible pair of
threads, resulting in N*(N-1)/2 comparators for an N-wide
thread group could be done, and the comparison results then
used to identify the largest equivalence class in the thread
group to use as the set S.
Alternatively, two sets S1 and S2 could be constructed
from a thread group of size N, with the set S1 being formed
from thread 0 and all threads that have the same address as
thread 0, and the set S2 being formed from thread (N-1) and
all threads that have the same address as thread (N-1). (If
thread 0 and thread N-1 have the same address, then set S2
could be omitted).
It can be seen from the above that the technology described
herein, in its embodiments at least, comprises a mechanism
for facilitating the execution of atomic operations for thread
groups in, e.g., a thread-group based GPU shader core, in a
more efficient manner.
This is achieved, in embodiments of the technology
described herein at least, by using a single “merged” atomic
memory access for the threads in a thread group that are to
access the same memory location.
The foregoing detailed description has been presented for
the purposes of illustration and description. It is not intended
to be exhaustive or to limit the technology to the precise form
disclosed. Many modifications and variations are possible in
the light of the above teaching. The described embodiments
were chosen in order to best explain the principles of the
technology and its practical application, to thereby enable
others skilled in the art to best utilise the technology in vari-
ous embodiments and with various modifications as are
suited to the particular use contemplated. It is intended that
the scope be defined by the claims appended hereto.
What is claimed is:
1. A method of operating a data processing system which
includes an execution pipeline that includes one or more
programmable execution stages which execute instructions to
perform data processing operations, and in which execution
threads may be grouped together into thread groups in which
the threads of the group are executed in lockstep, one instruc-
tion at a time, the method comprising:
for an atomic operation to be executed for a thread group by
an execution stage of the execution pipeline, the atomic
operation having an associated arithmetic operation:

issuing to the execution stage an instruction or instructions
to determine whether there is a set of threads in the
thread group for which the atomic operation for the
threads accesses the same memory location; and to, if
such a set of threads is identified, perform the atomic
operation for the set of threads by:

providing to the second thread in the set of threads, the first

thread’s register value for the atomic operation, per-
forming for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion, and performing for each thread in the set of threads
other than the first and second threads, if any, the arith-
metic operation for the atomic operation using the
thread’s register value for the atomic operation and the
result of the arithmetic operation for the preceding
thread in the set of threads, to thereby generate for the
final thread in the identified set of threads a combined
result of the arithmetic operation for the set of threads;
and

then executing, for the identified set of threads, a single

atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
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bined result of the arithmetic operation for the set of
threads as its register argument; and

the execution stage of the execution pipeline in response to
the instructions:

determining whether there is a set of threads in the thread
group for which the atomic operation for the threads
accesses the same memory location; and, if such a set of
threads is identified, performing the atomic operation
for the set of threads by:

providing to the second thread in the set of threads, the first
thread’s register value for the atomic operation;

performing for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion; and

performing for each thread in the set of threads other than
the first and second threads, if any, the arithmetic opera-
tion for the atomic operation using the thread’s register
value for the atomic operation and the result of the
arithmetic operation for the preceding thread in the set of
threads,

to thereby generate for the final thread in the identified set
of'threads a combined result of the arithmetic operation
for the set of threads; and

then executing for the identified set of threads a single
atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument.

2. The method of claim 1, wherein the atomic operation

comprises one of:

Integer Add; Bitwise AND, OR, XOR; Minimum Value;
Maximum Value; Saturating unsigned integer add; Inte-
ger multiply; floating-point add; floating point multiply;
integer add, modulo a constant K; Swap; and Compare-
and-Swap.

3. The method of claim 1, wherein the step of determining
whether there is a set of threads in the thread group for which
the atomic operation for the threads accesses the same
memory location comprises comparing the memory
addresses for the atomic operation across the threads in the
thread group to identify a set of threads in the thread group
that all use the same memory address.

4. The method of claim 1, further comprising:

where a set of threads for which the atomic operation
accesses the same memory location has been identified,
generating and storing metadata indicating the threads in
the set of threads.

5. The method of claim 1, further comprising the execution

stage when performing the atomic operation:

storing for the first thread in the set of threads, the identity
value for the arithmetic operation; and

storing for each other thread in the set of threads, the
arithmetic operation result for the preceding thread in
the set of threads.

6. The method of claim 5, further comprising the execution

stage when performing the atomic operation:

distributing the result of the single atomic memory access
request to all the threads in the set; and

performing for each thread in the set, the arithmetic opera-
tion for the atomic operation to combine the distributed
result value with the identity value or the arithmetic
operation result stored for the thread.

7. The method of claim 1, wherein the step of issuing to the

execution stage an instruction or instructions to determine
whether there is a set of threads in the thread group for which
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the atomic operation for the threads accesses the same

memory location; and to, if such a set of threads is identified,
perform the atomic operation comprises issuing:

apre-processing instruction that causes the execution stage

to determine whether there is a set of threads in the

thread group that all access the same memory address,

and to, if there is, provide to the second thread in the set

of threads, the first thread’s register value for the atomic

operation, perform for the second thread in the set of

threads the arithmetic operation for the atomic operation

using the second thread’s register value for the atomic

operation and the first thread’s register value for the

atomic operation, and perform for each thread in the set

of threads other than the first and second threads, if any,

the arithmetic operation for the atomic operation using

the thread’s register value for the atomic operation and

the result of the arithmetic operation for the preceding

thread in the set of threads, to thereby generate for the

final thread in the identified set of threads a combined

result of the arithmetic operation for the set of threads;

and a thread group atomic instruction that causes the

execution stage to then execute, for the identified set of

threads, a single atomic memory operation to the

memory location for the atomic operation for the set of

threads using the combined result of the arithmetic

operation for the set of threads as its register argument.

8. The method of claim 7, wherein:

the pre-processing instruction causes the execution stage

also to:

store for the first thread in the set of threads, the identity

value for the arithmetic operation; and

store for each other thread in the set of threads, the arith-

metic operation result for the preceding thread in the set
of threads;
and the thread group atomic instruction causes the execution
stage also to:

distribute the result of the single atomic memory access

request to all the threads in the set.

9. The method of claim 8, further comprising issuing to the
execution stage an arithmetic instruction that corresponds to
the arithmetic operation for the atomic operation to cause
each thread in the set to the arithmetic operation for the
atomic operation to combine the result of the single atomic
memory access request with the identity value or the arith-
metic operation result stored for the thread.

10. The method of claim 7, wherein:

the pre-processing instruction further causes the execution

stage to store for each thread in the thread group not in
the set, the identity value for the arithmetic operation in
question; and

the thread group atomic instruction further causes the

execution stage to issue an atomic memory operation
request for each thread in the thread group that is not in
the set.

11. The method of claim 1, wherein the data processing
system comprises a graphics processing system that includes
a graphics processing pipeline that includes one or more
programmable shader stages which execute graphics shader
programs to perform graphics processing operations.

12. A data processing system comprising:

an execution pipeline that includes one or more program-

mable execution stages which execute instructions to
perform data processing operations provided to the
execution pipeline by the host processor and in which
execution threads may be grouped together into thread
groups in which the threads of the group are executed in
lockstep, one instruction at a time; and
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a compiler that compiles programs for the execution pipe-
line to generate instructions for execution stages of the
execution pipeline;
wherein the compiler is configured to, for an atomic opera-
tion to be executed for a thread group by an execution
stage of the execution pipeline, the atomic operation
having an associated arithmetic operation:
issue to the execution stage an instruction or instructions
to determine whether there is a set of threads in the
thread group for which the atomic operation for the
threads accesses the same memory location; and to, if
such a set of threads is identified, perform the atomic
operation for the set of threads by:

providing to the second thread in the set of threads, the
first thread’s register value for the atomic operation,
performing for the second thread in the set of threads
the arithmetic operation for the atomic operation
using the second thread’s register value for the atomic
operation and the first thread’s register value for the
atomic operation, and performing for each thread in
the set of threads other than the first and second
threads, if any, the arithmetic operation for the atomic
operation using the thread’s register value for the
atomic operation and the result of the arithmetic
operation for the preceding thread in the set of
threads, to thereby generate for the final thread in the
identified set of threads a combined result of the arith-
metic operation for the set of threads; and

then executing for the identified set of threads a single
atomic memory operation to the memory location for
the atomic operation for the set of threads using the
combined result of the arithmetic operation for the set
of threads as its register argument; and

and wherein:

at least one execution stage of the execution pipeline is
configured to, in response to the instructions:

determine whether there is a set of threads in the thread
group for which the atomic operation for the threads
accesses the same memory location; and, if such a set of
threads is identified:

provide to the second thread in the set of threads, the first
thread’s register value for the atomic operation;

perform for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion; and

perform for each thread in the set of threads other than the
first and second threads, if any, the arithmetic operation
for the atomic operation using the thread’s register value
for the atomic operation and the result of the arithmetic
operation for the preceding thread in the set of threads,

to thereby generate for the final thread in the identified set
of'threads a combined result of the arithmetic operation
for the set of threads; and

then execute for the identified set of threads a single atomic
memory operation to the memory location for the atomic
operation for the set of threads using the combined result
of the arithmetic operation for the set of threads as its
register argument.

13. The system of claim 12, wherein the atomic operation
comprises one of: Integer Add; Bitwise AND, OR, XOR;
Minimum Value; Maximum Value; Saturating unsigned inte-
ger add; Integer multiply; floating-point add; floating point
multiply; integer add, modulo a constant K; Swap; and Com-
pare-and-Swap.
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14. The system of claim 12, wherein the execution stage
compares the memory addresses for the atomic operation
across the threads in the thread group to identify a set of
threads in the thread group that all use the same memory
address.

15. The system of claim 12, wherein the execution stage,
where a set of threads for which the atomic operation accesses
the same memory location has been identified, generates and
stores metadata indicating the threads in the set of threads.

16. The system of claim 12, wherein the execution stage
when performing the atomic operation:

stores for the first thread in the set of threads, the identity

value for the arithmetic operation; and

stores for each other thread in the set of threads, the arith-

metic operation result for the preceding thread in the set
of threads.

17. The system of claim 16, wherein the execution stage
when performing the atomic operation:

distributes the result of the single atomic memory access

request to all the threads in the set; and

performs for each thread in the set, the arithmetic operation

for the atomic operation to combine the distributed
result value with the identity value or the arithmetic
operation result stored for the thread.

18. The system of claim 12, wherein the compiler issues to
the execution stage:

apre-processing instruction that causes the execution stage

to determine whether there is a set of threads in the
thread group that all access the same memory address,
and to, if there is, provide to the second thread in the set
of threads, the first thread’s register value for the atomic
operation, perform for the second thread in the set of
threads the arithmetic operation for the atomic operation
using the second thread’s register value for the atomic
operation and the first thread’s register value for the
atomic operation, and perform for each thread in the set
of threads other than the first and second threads, if any,
the arithmetic operation for the atomic operation using
the thread’s register value for the atomic operation and
the result of the arithmetic operation for the preceding
thread in the set of threads, to thereby generate for the
final thread in the identified set of threads a combined
result of the arithmetic operation for the set of threads;
and

athread group atomic instruction that causes the execution

stage to then execute, for the identified set of threads, a
single atomic memory operation to the memory location
for the atomic operation for the set of threads using the
combined result of the arithmetic operation for the set of
threads as its register argument.

19. The system of claim 18, wherein:

the pre-processing instruction causes the execution stage

also to:

store for the first thread in the set of threads, the identity

value for the arithmetic operation; and

store for each other thread in the set of threads, the arith-

metic operation result for the preceding thread in the set
of threads;
and the thread group atomic instruction causes the execution
stage also to:

distribute the result of the single atomic memory access

request to all the threads in the set.

20. The system of claim 19, wherein the compiler further
issues to the execution stage an arithmetic instruction that
corresponds to the arithmetic operation for the atomic opera-
tion to cause each thread in the set to the arithmetic operation
for the atomic operation to combine the result of the single
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atomic memory access request with the identity value or the
arithmetic operation result stored for the thread.

21. The system of claim 18, wherein:

the pre-processing instruction further causes the execution

stage to store for each thread in the thread group not in
the set, the identity value for the arithmetic operation in
question; and

the thread group atomic instruction further causes the

execution stage to issue an atomic memory operation
request for each thread in the thread group that is not in
the set.

22. The system of claim 12, wherein the data processing
system comprises a graphics processing system that includes
a graphics processing pipeline that includes one or more
programmable shader stages which execute graphics shader
programs to perform graphics processing operations.

23. A compiler that compiles programs to generate instruc-
tions for execution stages of an execution pipeline that
includes one or more programmable execution stages that
execute instructions to perform data processing operations,
and in which execution threads may be grouped together into
thread groups in which the threads of the group are executed
in lockstep, one instruction at a time, wherein the compiler is
configured to for an atomic operation to be executed for a
thread group by an execution stage of the execution pipeline,
the atomic operation having an associated arithmetic opera-
tion:

issue to the execution stage an instruction or instructions to

determine whether there is a set of threads in the thread
group for which the atomic operation for the threads
accesses the same memory location; and to, if such a set
of'threads is identified, perform the atomic operation for
the set of threads by:

providing to the second thread in the set of threads, the first

thread’s register value for the atomic operation, per-
forming for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion, and performing for each thread in the set of threads
other than the first and second threads, if any, the arith-
metic operation for the atomic operation using the
thread’s register value for the atomic operation and the
result of the arithmetic operation for the preceding
thread in the set of threads, to thereby generate for the
final thread in the identified set of threads a combined
result of the arithmetic operation for the set of threads;
and

then executing, for the identified set of threads, a single

atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument.

24. An execution pipeline for a data processing system that
includes one or more programmable execution stages which
execute instructions to perform data processing operations,
and in which execution threads may be grouped together into
thread groups in which the threads of the group are executed
in lockstep, one instruction at a time, wherein:

at least one execution stage of the execution pipeline is

configured to, when executing instructions in an instruc-
tion stream, in response to a set of instructions in the
instruction stream for performing an atomic operation
provided by a compiler for the execution stage:
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determine whether there is a set of threads in the thread
group for which the atomic operation for the threads
accesses the same memory location; and, if such a set of
threads is identified:
provide to the second thread in the set of threads, the first
thread’s register value for the atomic operation;

perform for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion; and
perform for each thread in the set of threads other than the
first and second threads, if any, the arithmetic operation
for the atomic operation using the thread’s register value
for the atomic operation and the result of the arithmetic
operation for the preceding thread in the set of threads,

to thereby generate for the final thread in the identified set
of threads a combined result of the arithmetic operation
for the set of threads; and
then execute for the identified set of threads a single atomic
memory operation to the memory location for the atomic
operation for the set of threads using the combined result
of the arithmetic operation for the set of threads as its
register argument for the set of threads.
25. A non-transitory computer readable storage medium
storing computer software code which when executing on a
processor performs a method of operating a data processing
system which includes an execution pipeline that includes
one or more programmable execution stages which execute
instructions to perform data processing operations, and in
which execution threads may be grouped together into thread
groups in which the threads of the group are executed in
lockstep, one instruction at a time, the method comprising:
for an atomic operation to be executed for a thread group by
an execution stage of the execution pipeline, the atomic
operation having an associated arithmetic operation:

issuing to the execution stage an instruction or instructions
to determine whether there is a set of threads in the
thread group for which the atomic operation for the
threads accesses the same memory location; and to, if
such a set of threads is identified, perform the atomic
operation for the set of threads by:

providing to the second thread in the set of threads, the first

thread’s register value for the atomic operation, per-
forming for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion, and performing for each thread in the set of threads
other than the first and second threads, if any, the arith-
metic operation for the atomic operation using the
thread’s register value for the atomic operation and the
result of the arithmetic operation for the preceding
thread in the set of threads, to thereby generate for the
final thread in the identified set of threads a combined
result of the arithmetic operation for the set of threads;
and

then executing, for the identified set of threads, a single

atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument; and

the execution stage of the execution pipeline in response to

the instructions:

determining whether there is a set of threads in the thread

group for which the atomic operation for the threads
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accesses the same memory location; and, if such a set of
threads is identified, performing the atomic operation
for the set of threads by:

providing to the second thread in the set of threads, the first
thread’s register value for the atomic operation;

performing for the second thread in the set of threads the
arithmetic operation for the atomic operation using the
second thread’s register value for the atomic operation
and the first thread’s register value for the atomic opera-
tion; and

performing for each thread in the set of threads other than
the first and second threads, if any, the arithmetic opera-
tion for the atomic operation using the thread’s register
value for the atomic operation and the result of the
arithmetic operation for the preceding thread in the set of
threads,

to thereby generate for the final thread in the identified set
of'threads a combined result of the arithmetic operation
for the set of threads; and

then executing for the identified set of threads a single
atomic memory operation to the memory location for the
atomic operation for the set of threads using the com-
bined result of the arithmetic operation for the set of
threads as its register argument.

#* #* #* #* #*
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